chess:programming:search
This is an old revision of the document!
Table of Contents
Chess - Programming - Search
Alpha-Beta
score = alphaBetaMax(-oo, +oo, depth);
int alphaBetaMax( int alpha, int beta, int depthleft ) { if ( depthleft == 0 ) return evaluate(); for ( all moves) { score = alphaBetaMin( alpha, beta, depthleft - 1 ); if( score >= beta ) return beta; // fail hard beta-cutoff if( score > alpha ) alpha = score; // alpha acts like max in MiniMax } return alpha; } int alphaBetaMin( int alpha, int beta, int depthleft ) { if ( depthleft == 0 ) return -evaluate(); for ( all moves) { score = alphaBetaMax( alpha, beta, depthleft - 1 ); if( score <= alpha ) return alpha; // fail hard alpha-cutoff if( score < beta ) beta = score; // beta acts like min in MiniMax } return beta; }
Minimax
Minimax is an algorithm used to determine the score in a zero-sum game after a certain number of moves, with best play according to an evaluation function.
int maxi( int depth ) { if ( depth == 0 ) return evaluate(); int max = -oo; for ( all moves) { score = mini( depth - 1 ); if( score > max ) max = score; } return max; } int mini( int depth ) { if ( depth == 0 ) return -evaluate(); int min = +oo; for ( all moves) { score = maxi( depth - 1 ); if( score < min ) min = score; } return min; }
Negamax
Negamax is a common way of implementing minimax and derived algorithms.
- Instead of using two separate subroutines for the Min player and the Max player, it passes on the negated score due to following mathematical relation:
max(a, b) == -min(-a, -b)
This is how the pseudo-code of the recursive algorithm looks like. For clarity move making and unmaking is omitted.
int negaMax( int depth ) { if ( depth == 0 ) return evaluate(); int max = -oo; for ( all moves) { score = -negaMax( depth - 1 ); if( score > max ) max = score; } return max; }
References
chess/programming/search.1633991670.txt.gz · Last modified: 2021/10/11 22:34 by peter