- The 'magic' part in this algorithm is to determine the M and S values that will produce a collision-free lookup table as small as possible.
- This is a Perfect Hash Function problem.
- However, no perfect hashing has been found for magic bitboards so far, which means that the lookup tables in use typically contain many unused 'holes'.
- Most of the time, they are built by running an extensive brute-force search.
===== Example ===== The Rook can move any amount of positions horizontally but cannot jump over the King.
┌───┬───┬───┬───┬───┬───┬───┬───┐ │ │ │ R │ │ │ k │ │ │ └───┴───┴───┴───┴───┴───┴───┴───┘ 7 6 5 4 3 2 1 0How to verify that the following is an illegal move, because the Rook cannot jump over the King?
┌───┬───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ k │ │ R │ └───┴───┴───┴───┴───┴───┴───┴───┘
NOTE: It is not possible to determine valid moves for sliding pieces by using only bitwise operations.
- Bitwise operations and pre-computed lookup tables will be needed.
- Therefore, it is entirely feasible to build a direct lookup table based on the position and the current board without applying the magic part.
- This would be:
reachable_squares = lookup[P][board]
- This will result in a lookup table containing:
8 * 2^8 = 2048 entries
- Obviously we cannot do that for chess, as it would contain:
64 * 2^64 = 1,180,591,620,717,411,303,424 entries
- Hence the need for the magic multiply and shift operations to store the data in a more compact manner.
===== Build a lookup table =====
int xPos = 2; // Position of the 'K' piece. UINT64 board = 1 << xPos, // Initial board. lookup = []; // Lookup table. void buildLookup() { int i, pos, msk; // Iterate on all possible positions. for(pos=0; pos<8; pos++) { // Iterate on all possible occupancy masks. for(lookup[pos] = [], msk=0; msk<0x100; msk++) { lookup[pos][msk] = 0; // Compute valid moves to the left. for(i=pos+1; i<8 && !(msk & (1<<i)); i++) { lookup[pos][msk] |= 1 << i; } // Compute valid moves to the right. for(i=pos-1; i>=0 && !(msk & (1<<i)); i--) { lookup[pos][msk] |= 1 << i; } } } } void update() { // Get valid target squares from the lookup table. var target = lookup[xPos][board]; // Redraw board for(var n=0; n<8; n++) { if(n != xPos) { $('td').eq(7 - n) .html(board & (1 << n) ? 'O' : '') .toggleClass('reachable', !!(target & (1 << n))); } } } void moveTo(int pos) { var n = 7 - pos); n != xPos && (board ^= 1 << n); update(); } buildLookup(); update();