images:png_to_raw_pixel_buffer
Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
images:png_to_raw_pixel_buffer [2017/01/17 12:08] – created peter | images:png_to_raw_pixel_buffer [2019/11/29 16:28] (current) – removed peter | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== Images - PNG to raw pixel buffer ====== | ||
- | |||
- | <code cpp> | ||
- | #include < | ||
- | |||
- | /* | ||
- | decodePNG: The picoPNG function, decodes a PNG file buffer in memory, into a raw pixel buffer. | ||
- | out_image: output parameter, this will contain the raw pixels after decoding. | ||
- | By default the output is 32-bit RGBA color. | ||
- | The std::vector is automatically resized to the correct size. | ||
- | image_width: | ||
- | image_height: | ||
- | in_png: pointer to the buffer of the PNG file in memory. To get it from a file on | ||
- | disk, load it and store it in a memory buffer yourself first. | ||
- | in_size: size of the input PNG file in bytes. | ||
- | convert_to_rgba32: | ||
- | Set to true to get the output in RGBA 32-bit (8 bit per channel) color format | ||
- | no matter what color type the original PNG image had. This gives predictable, | ||
- | useable data from any random input PNG. | ||
- | Set to false to do no color conversion at all. The result then has the same data | ||
- | type as the PNG image, which can range from 1 bit to 64 bits per pixel. | ||
- | Information about the color type or palette colors are not provided. You need | ||
- | to know this information yourself to be able to use the data so this only | ||
- | works for trusted PNG files. Use LodePNG instead of picoPNG if you need this information. | ||
- | return: 0 if success, not 0 if some error occured. | ||
- | */ | ||
- | int decodePNG(std:: | ||
- | { | ||
- | // picoPNG version 20101224 | ||
- | // Copyright (c) 2005-2010 Lode Vandevenne | ||
- | // | ||
- | // This software is provided ' | ||
- | // warranty. In no event will the authors be held liable for any damages | ||
- | // arising from the use of this software. | ||
- | // | ||
- | // Permission is granted to anyone to use this software for any purpose, | ||
- | // including commercial applications, | ||
- | // freely, subject to the following restrictions: | ||
- | // | ||
- | // 1. The origin of this software must not be misrepresented; | ||
- | // claim that you wrote the original software. If you use this software | ||
- | // in a product, an acknowledgment in the product documentation would be | ||
- | // | ||
- | // 2. Altered source versions must be plainly marked as such, and must not be | ||
- | // | ||
- | // 3. This notice may not be removed or altered from any source distribution. | ||
- | | ||
- | // picoPNG is a PNG decoder in one C++ function of around 500 lines. Use picoPNG for | ||
- | // programs that need only 1 .cpp file. Since it's a single function, it's very limited, | ||
- | // it can convert a PNG to raw pixel data either converted to 32-bit RGBA color or | ||
- | // with no color conversion at all. For anything more complex, another tiny library | ||
- | // is available: LodePNG (lodepng.c(pp)), | ||
- | // Apologies for the compact code style, it's to make this tiny. | ||
- | | ||
- | static const unsigned long LENBASE[29] = {3, | ||
- | static const unsigned long LENEXTRA[29] = {0, | ||
- | static const unsigned long DISTBASE[30] = {1, | ||
- | static const unsigned long DISTEXTRA[30] = {0, | ||
- | static const unsigned long CLCL[19] = {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; //code length code lengths | ||
- | struct Zlib //nested functions for zlib decompression | ||
- | { | ||
- | static unsigned long readBitFromStream(size_t& | ||
- | static unsigned long readBitsFromStream(size_t& | ||
- | { | ||
- | unsigned long result = 0; | ||
- | for(size_t i = 0; i < nbits; i++) result += (readBitFromStream(bitp, | ||
- | return result; | ||
- | } | ||
- | struct HuffmanTree | ||
- | { | ||
- | int makeFromLengths(const std:: | ||
- | { //make tree given the lengths | ||
- | unsigned long numcodes = (unsigned long)(bitlen.size()), | ||
- | std:: | ||
- | for(unsigned long bits = 0; bits < numcodes; bits++) blcount[bitlen[bits]]++; | ||
- | for(unsigned long bits = 1; bits <= maxbitlen; bits++) nextcode[bits] = (nextcode[bits - 1] + blcount[bits - 1]) << 1; | ||
- | for(unsigned long n = 0; n < numcodes; n++) if(bitlen[n] != 0) tree1d[n] = nextcode[bitlen[n]]++; | ||
- | tree2d.clear(); | ||
- | for(unsigned long n = 0; n < numcodes; n++) //the codes | ||
- | for(unsigned long i = 0; i < bitlen[n]; i++) //the bits for this code | ||
- | { | ||
- | unsigned long bit = (tree1d[n] >> (bitlen[n] - i - 1)) & 1; | ||
- | if(treepos > numcodes - 2) return 55; | ||
- | if(tree2d[2 * treepos + bit] == 32767) //not yet filled in | ||
- | { | ||
- | if(i + 1 == bitlen[n]) { tree2d[2 * treepos + bit] = n; treepos = 0; } //last bit | ||
- | else { tree2d[2 * treepos + bit] = ++nodefilled + numcodes; treepos = nodefilled; } //addresses are encoded as values > numcodes | ||
- | } | ||
- | else treepos = tree2d[2 * treepos + bit] - numcodes; //subtract numcodes from address to get address value | ||
- | } | ||
- | return 0; | ||
- | } | ||
- | int decode(bool& | ||
- | { //Decodes a symbol from the tree | ||
- | unsigned long numcodes = (unsigned long)tree2d.size() / 2; | ||
- | if(treepos >= numcodes) return 11; //error: you appeared outside the codetree | ||
- | result = tree2d[2 * treepos + bit]; | ||
- | decoded = (result < numcodes); | ||
- | treepos = decoded ? 0 : result - numcodes; | ||
- | return 0; | ||
- | } | ||
- | std:: | ||
- | }; | ||
- | struct Inflator | ||
- | { | ||
- | int error; | ||
- | void inflate(std:: | ||
- | { | ||
- | size_t bp = 0, pos = 0; //bit pointer and byte pointer | ||
- | error = 0; | ||
- | unsigned long BFINAL = 0; | ||
- | while(!BFINAL && !error) | ||
- | { | ||
- | if(bp >> 3 >= in.size()) { error = 52; return; } //error, bit pointer will jump past memory | ||
- | BFINAL = readBitFromStream(bp, | ||
- | unsigned long BTYPE = readBitFromStream(bp, | ||
- | if(BTYPE == 3) { error = 20; return; } //error: invalid BTYPE | ||
- | else if(BTYPE == 0) inflateNoCompression(out, | ||
- | else inflateHuffmanBlock(out, | ||
- | } | ||
- | if(!error) out.resize(pos); | ||
- | } | ||
- | void generateFixedTrees(HuffmanTree& | ||
- | { | ||
- | std:: | ||
- | for(size_t i = 144; i <= 255; i++) bitlen[i] = 9; | ||
- | for(size_t i = 256; i <= 279; i++) bitlen[i] = 7; | ||
- | tree.makeFromLengths(bitlen, | ||
- | treeD.makeFromLengths(bitlenD, | ||
- | } | ||
- | HuffmanTree codetree, codetreeD, codelengthcodetree; | ||
- | unsigned long huffmanDecodeSymbol(const unsigned char* in, size_t& bp, const HuffmanTree& | ||
- | { //decode a single symbol from given list of bits with given code tree. return value is the symbol | ||
- | bool decoded; unsigned long ct; | ||
- | for(size_t treepos = 0;;) | ||
- | { | ||
- | if((bp & 0x07) == 0 && (bp >> 3) > inlength) { error = 10; return 0; } //error: end reached without endcode | ||
- | error = codetree.decode(decoded, | ||
- | if(decoded) return ct; | ||
- | } | ||
- | } | ||
- | void getTreeInflateDynamic(HuffmanTree& | ||
- | { //get the tree of a deflated block with dynamic tree, the tree itself is also Huffman compressed with a known tree | ||
- | std:: | ||
- | if(bp >> 3 >= inlength - 2) { error = 49; return; } //the bit pointer is or will go past the memory | ||
- | size_t HLIT = readBitsFromStream(bp, | ||
- | size_t HDIST = readBitsFromStream(bp, | ||
- | size_t HCLEN = readBitsFromStream(bp, | ||
- | std:: | ||
- | for(size_t i = 0; i < 19; i++) codelengthcode[CLCL[i]] = (i < HCLEN) ? readBitsFromStream(bp, | ||
- | error = codelengthcodetree.makeFromLengths(codelengthcode, | ||
- | size_t i = 0, replength; | ||
- | while(i < HLIT + HDIST) | ||
- | { | ||
- | unsigned long code = huffmanDecodeSymbol(in, | ||
- | if(code <= 15) { if(i < HLIT) bitlen[i++] = code; else bitlenD[i++ - HLIT] = code; } //a length code | ||
- | else if(code == 16) //repeat previous | ||
- | { | ||
- | if(bp >> 3 >= inlength) { error = 50; return; } //error, bit pointer jumps past memory | ||
- | replength = 3 + readBitsFromStream(bp, | ||
- | unsigned long value; //set value to the previous code | ||
- | if((i - 1) < HLIT) value = bitlen[i - 1]; | ||
- | else value = bitlenD[i - HLIT - 1]; | ||
- | for(size_t n = 0; n < replength; n++) //repeat this value in the next lengths | ||
- | { | ||
- | if(i >= HLIT + HDIST) { error = 13; return; } //error: i is larger than the amount of codes | ||
- | if(i < HLIT) bitlen[i++] = value; else bitlenD[i++ - HLIT] = value; | ||
- | } | ||
- | } | ||
- | else if(code == 17) //repeat " | ||
- | { | ||
- | if(bp >> 3 >= inlength) { error = 50; return; } //error, bit pointer jumps past memory | ||
- | replength = 3 + readBitsFromStream(bp, | ||
- | for(size_t n = 0; n < replength; n++) //repeat this value in the next lengths | ||
- | { | ||
- | if(i >= HLIT + HDIST) { error = 14; return; } //error: i is larger than the amount of codes | ||
- | if(i < HLIT) bitlen[i++] = 0; else bitlenD[i++ - HLIT] = 0; | ||
- | } | ||
- | } | ||
- | else if(code == 18) //repeat " | ||
- | { | ||
- | if(bp >> 3 >= inlength) { error = 50; return; } //error, bit pointer jumps past memory | ||
- | replength = 11 + readBitsFromStream(bp, | ||
- | for(size_t n = 0; n < replength; n++) //repeat this value in the next lengths | ||
- | { | ||
- | if(i >= HLIT + HDIST) { error = 15; return; } //error: i is larger than the amount of codes | ||
- | if(i < HLIT) bitlen[i++] = 0; else bitlenD[i++ - HLIT] = 0; | ||
- | } | ||
- | } | ||
- | else { error = 16; return; } //error: somehow an unexisting code appeared. This can never happen. | ||
- | } | ||
- | if(bitlen[256] == 0) { error = 64; return; } //the length of the end code 256 must be larger than 0 | ||
- | error = tree.makeFromLengths(bitlen, | ||
- | error = treeD.makeFromLengths(bitlenD, | ||
- | } | ||
- | void inflateHuffmanBlock(std:: | ||
- | { | ||
- | if(btype == 1) { generateFixedTrees(codetree, | ||
- | else if(btype == 2) { getTreeInflateDynamic(codetree, | ||
- | for(;;) | ||
- | { | ||
- | unsigned long code = huffmanDecodeSymbol(in, | ||
- | if(code == 256) return; //end code | ||
- | else if(code <= 255) //literal symbol | ||
- | { | ||
- | if(pos >= out.size()) out.resize((pos + 1) * 2); //reserve more room | ||
- | out[pos++] = (unsigned char)(code); | ||
- | } | ||
- | else if(code >= 257 && code <= 285) //length code | ||
- | { | ||
- | size_t length = LENBASE[code - 257], numextrabits = LENEXTRA[code - 257]; | ||
- | if((bp >> 3) >= inlength) { error = 51; return; } //error, bit pointer will jump past memory | ||
- | length += readBitsFromStream(bp, | ||
- | unsigned long codeD = huffmanDecodeSymbol(in, | ||
- | if(codeD > 29) { error = 18; return; } //error: invalid dist code (30-31 are never used) | ||
- | unsigned long dist = DISTBASE[codeD], | ||
- | if((bp >> 3) >= inlength) { error = 51; return; } //error, bit pointer will jump past memory | ||
- | dist += readBitsFromStream(bp, | ||
- | size_t start = pos, back = start - dist; //backwards | ||
- | if(pos + length >= out.size()) out.resize((pos + length) * 2); //reserve more room | ||
- | for(size_t i = 0; i < length; i++) { out[pos++] = out[back++]; | ||
- | } | ||
- | } | ||
- | } | ||
- | void inflateNoCompression(std:: | ||
- | { | ||
- | while((bp & 0x7) != 0) bp++; //go to first boundary of byte | ||
- | size_t p = bp / 8; | ||
- | if(p >= inlength - 4) { error = 52; return; } //error, bit pointer will jump past memory | ||
- | unsigned long LEN = in[p] + 256 * in[p + 1], NLEN = in[p + 2] + 256 * in[p + 3]; p += 4; | ||
- | if(LEN + NLEN != 65535) { error = 21; return; } //error: NLEN is not one's complement of LEN | ||
- | if(pos + LEN >= out.size()) out.resize(pos + LEN); | ||
- | if(p + LEN > inlength) { error = 23; return; } //error: reading outside of in buffer | ||
- | for(unsigned long n = 0; n < LEN; n++) out[pos++] = in[p++]; //read LEN bytes of literal data | ||
- | bp = p * 8; | ||
- | } | ||
- | }; | ||
- | int decompress(std:: | ||
- | { | ||
- | Inflator inflator; | ||
- | if(in.size() < 2) { return 53; } //error, size of zlib data too small | ||
- | if((in[0] * 256 + in[1]) % 31 != 0) { return 24; } //error: 256 * in[0] + in[1] must be a multiple of 31, the FCHECK value is supposed to be made that way | ||
- | unsigned long CM = in[0] & 15, CINFO = (in[0] >> 4) & 15, FDICT = (in[1] >> 5) & 1; | ||
- | if(CM != 8 || CINFO > 7) { return 25; } //error: only compression method 8: inflate with sliding window of 32k is supported by the PNG spec | ||
- | if(FDICT != 0) { return 26; } //error: the specification of PNG says about the zlib stream: "The additional flags shall not specify a preset dictionary." | ||
- | inflator.inflate(out, | ||
- | return inflator.error; | ||
- | } | ||
- | }; | ||
- | struct PNG //nested functions for PNG decoding | ||
- | { | ||
- | struct Info | ||
- | { | ||
- | unsigned long width, height, colorType, bitDepth, compressionMethod, | ||
- | bool key_defined; | ||
- | std:: | ||
- | } info; | ||
- | int error; | ||
- | void decode(std:: | ||
- | { | ||
- | error = 0; | ||
- | if(size == 0 || in == 0) { error = 48; return; } //the given data is empty | ||
- | readPngHeader(& | ||
- | size_t pos = 33; //first byte of the first chunk after the header | ||
- | std:: | ||
- | bool IEND = false, known_type = true; | ||
- | info.key_defined = false; | ||
- | while(!IEND) //loop through the chunks, ignoring unknown chunks and stopping at IEND chunk. IDAT data is put at the start of the in buffer | ||
- | { | ||
- | if(pos + 8 >= size) { error = 30; return; } //error: size of the in buffer too small to contain next chunk | ||
- | size_t chunkLength = read32bitInt(& | ||
- | if(chunkLength > 2147483647) { error = 63; return; } | ||
- | if(pos + chunkLength >= size) { error = 35; return; } //error: size of the in buffer too small to contain next chunk | ||
- | if(in[pos + 0] == ' | ||
- | { | ||
- | idat.insert(idat.end(), | ||
- | pos += (4 + chunkLength); | ||
- | } | ||
- | else if(in[pos + 0] == ' | ||
- | else if(in[pos + 0] == ' | ||
- | { | ||
- | pos += 4; //go after the 4 letters | ||
- | info.palette.resize(4 * (chunkLength / 3)); | ||
- | if(info.palette.size() > (4 * 256)) { error = 38; return; } //error: palette too big | ||
- | for(size_t i = 0; i < info.palette.size(); | ||
- | { | ||
- | for(size_t j = 0; j < 3; j++) info.palette[i + j] = in[pos++]; //RGB | ||
- | info.palette[i + 3] = 255; //alpha | ||
- | } | ||
- | } | ||
- | else if(in[pos + 0] == ' | ||
- | { | ||
- | pos += 4; //go after the 4 letters | ||
- | if(info.colorType == 3) | ||
- | { | ||
- | if(4 * chunkLength > info.palette.size()) { error = 39; return; } //error: more alpha values given than there are palette entries | ||
- | for(size_t i = 0; i < chunkLength; | ||
- | } | ||
- | else if(info.colorType == 0) | ||
- | { | ||
- | if(chunkLength != 2) { error = 40; return; } //error: this chunk must be 2 bytes for greyscale image | ||
- | info.key_defined = 1; info.key_r = info.key_g = info.key_b = 256 * in[pos] + in[pos + 1]; pos += 2; | ||
- | } | ||
- | else if(info.colorType == 2) | ||
- | { | ||
- | if(chunkLength != 6) { error = 41; return; } //error: this chunk must be 6 bytes for RGB image | ||
- | info.key_defined = 1; | ||
- | info.key_r = 256 * in[pos] + in[pos + 1]; pos += 2; | ||
- | info.key_g = 256 * in[pos] + in[pos + 1]; pos += 2; | ||
- | info.key_b = 256 * in[pos] + in[pos + 1]; pos += 2; | ||
- | } | ||
- | else { error = 42; return; } //error: tRNS chunk not allowed for other color models | ||
- | } | ||
- | else //it's not an implemented chunk type, so ignore it: skip over the data | ||
- | { | ||
- | if(!(in[pos + 0] & 32)) { error = 69; return; } //error: unknown critical chunk (5th bit of first byte of chunk type is 0) | ||
- | pos += (chunkLength + 4); //skip 4 letters and uninterpreted data of unimplemented chunk | ||
- | known_type = false; | ||
- | } | ||
- | pos += 4; //step over CRC (which is ignored) | ||
- | } | ||
- | unsigned long bpp = getBpp(info); | ||
- | std:: | ||
- | Zlib zlib; // | ||
- | error = zlib.decompress(scanlines, | ||
- | size_t bytewidth = (bpp + 7) / 8, outlength = (info.height * info.width * bpp + 7) / 8; | ||
- | out.resize(outlength); | ||
- | unsigned char* out_ = outlength ? &out[0] : 0; //use a regular pointer to the std::vector for faster code if compiled without optimization | ||
- | if(info.interlaceMethod == 0) //no interlace, just filter | ||
- | { | ||
- | size_t linestart = 0, linelength = (info.width * bpp + 7) / 8; //length in bytes of a scanline, excluding the filtertype byte | ||
- | if(bpp >= 8) //byte per byte | ||
- | for(unsigned long y = 0; y < info.height; | ||
- | { | ||
- | unsigned long filterType = scanlines[linestart]; | ||
- | const unsigned char* prevline = (y == 0) ? 0 : & | ||
- | unFilterScanline(& | ||
- | linestart += (1 + linelength); | ||
- | } | ||
- | else //less than 8 bits per pixel, so fill it up bit per bit | ||
- | { | ||
- | std:: | ||
- | for(size_t y = 0, obp = 0; y < info.height; | ||
- | { | ||
- | unsigned long filterType = scanlines[linestart]; | ||
- | const unsigned char* prevline = (y == 0) ? 0 : & | ||
- | unFilterScanline(& | ||
- | for(size_t bp = 0; bp < info.width * bpp;) setBitOfReversedStream(obp, | ||
- | linestart += (1 + linelength); | ||
- | } | ||
- | } | ||
- | } | ||
- | else // | ||
- | { | ||
- | size_t passw[7] = { (info.width + 7) / 8, (info.width + 3) / 8, (info.width + 3) / 4, (info.width + 1) / 4, (info.width + 1) / 2, (info.width + 0) / 2, (info.width + 0) / 1 }; | ||
- | size_t passh[7] = { (info.height + 7) / 8, (info.height + 7) / 8, (info.height + 3) / 8, (info.height + 3) / 4, (info.height + 1) / 4, (info.height + 1) / 2, (info.height + 0) / 2 }; | ||
- | size_t passstart[7] = {0}; | ||
- | size_t pattern[28] = {0, | ||
- | for(int i = 0; i < 6; i++) passstart[i + 1] = passstart[i] + passh[i] * ((passw[i] ? 1 : 0) + (passw[i] * bpp + 7) / 8); | ||
- | std:: | ||
- | for(int i = 0; i < 7; i++) | ||
- | adam7Pass(& | ||
- | } | ||
- | if(convert_to_rgba32 && (info.colorType != 6 || info.bitDepth != 8)) // | ||
- | { | ||
- | std:: | ||
- | error = convert(out, | ||
- | } | ||
- | } | ||
- | void readPngHeader(const unsigned char* in, size_t inlength) //read the information from the header and store it in the Info | ||
- | { | ||
- | if(inlength < 29) { error = 27; return; } //error: the data length is smaller than the length of the header | ||
- | if(in[0] != 137 || in[1] != 80 || in[2] != 78 || in[3] != 71 || in[4] != 13 || in[5] != 10 || in[6] != 26 || in[7] != 10) { error = 28; return; } //no PNG signature | ||
- | if(in[12] != ' | ||
- | info.width = read32bitInt(& | ||
- | info.bitDepth = in[24]; info.colorType = in[25]; | ||
- | info.compressionMethod = in[26]; if(in[26] != 0) { error = 32; return; } //error: only compression method 0 is allowed in the specification | ||
- | info.filterMethod = in[27]; if(in[27] != 0) { error = 33; return; } //error: only filter method 0 is allowed in the specification | ||
- | info.interlaceMethod = in[28]; if(in[28] > 1) { error = 34; return; } //error: only interlace methods 0 and 1 exist in the specification | ||
- | error = checkColorValidity(info.colorType, | ||
- | } | ||
- | void unFilterScanline(unsigned char* recon, const unsigned char* scanline, const unsigned char* precon, size_t bytewidth, unsigned long filterType, size_t length) | ||
- | { | ||
- | switch(filterType) | ||
- | { | ||
- | case 0: for(size_t i = 0; i < length; i++) recon[i] = scanline[i]; | ||
- | case 1: | ||
- | for(size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i]; | ||
- | for(size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + recon[i - bytewidth]; | ||
- | break; | ||
- | case 2: | ||
- | if(precon) for(size_t i = 0; i < length; i++) recon[i] = scanline[i] + precon[i]; | ||
- | else | ||
- | break; | ||
- | case 3: | ||
- | if(precon) | ||
- | { | ||
- | for(size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i] + precon[i] / 2; | ||
- | for(size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + ((recon[i - bytewidth] + precon[i]) / 2); | ||
- | } | ||
- | else | ||
- | { | ||
- | for(size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i]; | ||
- | for(size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + recon[i - bytewidth] / 2; | ||
- | } | ||
- | break; | ||
- | case 4: | ||
- | if(precon) | ||
- | { | ||
- | for(size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i] + paethPredictor(0, | ||
- | for(size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + paethPredictor(recon[i - bytewidth], precon[i], precon[i - bytewidth]); | ||
- | } | ||
- | else | ||
- | { | ||
- | for(size_t i = 0; i < bytewidth; i++) recon[i] = scanline[i]; | ||
- | for(size_t i = bytewidth; i < length; i++) recon[i] = scanline[i] + paethPredictor(recon[i - bytewidth], 0, 0); | ||
- | } | ||
- | break; | ||
- | default: error = 36; return; //error: unexisting filter type given | ||
- | } | ||
- | } | ||
- | void adam7Pass(unsigned char* out, unsigned char* linen, unsigned char* lineo, const unsigned char* in, unsigned long w, size_t passleft, size_t passtop, size_t spacex, size_t spacey, size_t passw, size_t passh, unsigned long bpp) | ||
- | { //filter and reposition the pixels into the output when the image is Adam7 interlaced. This function can only do it after the full image is already decoded. The out buffer must have the correct allocated memory size already. | ||
- | if(passw == 0) return; | ||
- | size_t bytewidth = (bpp + 7) / 8, linelength = 1 + ((bpp * passw + 7) / 8); | ||
- | for(unsigned long y = 0; y < passh; y++) | ||
- | { | ||
- | unsigned char filterType = in[y * linelength], | ||
- | unFilterScanline(linen, | ||
- | if(bpp >= 8) for(size_t i = 0; i < passw; i++) for(size_t b = 0; b < bytewidth; b++) //b = current byte of this pixel | ||
- | out[bytewidth * w * (passtop + spacey * y) + bytewidth * (passleft + spacex * i) + b] = linen[bytewidth * i + b]; | ||
- | else for(size_t i = 0; i < passw; i++) | ||
- | { | ||
- | size_t obp = bpp * w * (passtop + spacey * y) + bpp * (passleft + spacex * i), bp = i * bpp; | ||
- | for(size_t b = 0; b < bpp; b++) setBitOfReversedStream(obp, | ||
- | } | ||
- | unsigned char* temp = linen; linen = lineo; lineo = temp; //swap the two buffer pointers "line old" and "line new" | ||
- | } | ||
- | } | ||
- | static unsigned long readBitFromReversedStream(size_t& | ||
- | static unsigned long readBitsFromReversedStream(size_t& | ||
- | { | ||
- | unsigned long result = 0; | ||
- | for(size_t i = nbits - 1; i < nbits; i--) result += ((readBitFromReversedStream(bitp, | ||
- | return result; | ||
- | } | ||
- | void setBitOfReversedStream(size_t& | ||
- | unsigned long read32bitInt(const unsigned char* buffer) { return (buffer[0] << 24) | (buffer[1] << 16) | (buffer[2] << 8) | buffer[3]; } | ||
- | int checkColorValidity(unsigned long colorType, unsigned long bd) //return type is a LodePNG error code | ||
- | { | ||
- | if((colorType == 2 || colorType == 4 || colorType == 6)) { if(!(bd == 8 || bd == 16)) return 37; else return 0; } | ||
- | else if(colorType == 0) { if(!(bd == 1 || bd == 2 || bd == 4 || bd == 8 || bd == 16)) return 37; else return 0; } | ||
- | else if(colorType == 3) { if(!(bd == 1 || bd == 2 || bd == 4 || bd == 8 )) return 37; else return 0; } | ||
- | else return 31; // | ||
- | } | ||
- | unsigned long getBpp(const Info& info) | ||
- | { | ||
- | if(info.colorType == 2) return (3 * info.bitDepth); | ||
- | else if(info.colorType >= 4) return (info.colorType - 2) * info.bitDepth; | ||
- | else return info.bitDepth; | ||
- | } | ||
- | int convert(std:: | ||
- | { //converts from any color type to 32-bit. return value = LodePNG error code | ||
- | size_t numpixels = w * h, bp = 0; | ||
- | out.resize(numpixels * 4); | ||
- | unsigned char* out_ = out.empty() ? 0 : & | ||
- | if(infoIn.bitDepth == 8 && infoIn.colorType == 0) //greyscale | ||
- | for(size_t i = 0; i < numpixels; i++) | ||
- | { | ||
- | out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[i]; | ||
- | out_[4 * i + 3] = (infoIn.key_defined && in[i] == infoIn.key_r) ? 0 : 255; | ||
- | } | ||
- | else if(infoIn.bitDepth == 8 && infoIn.colorType == 2) //RGB color | ||
- | for(size_t i = 0; i < numpixels; i++) | ||
- | { | ||
- | for(size_t c = 0; c < 3; c++) out_[4 * i + c] = in[3 * i + c]; | ||
- | out_[4 * i + 3] = (infoIn.key_defined == 1 && in[3 * i + 0] == infoIn.key_r && in[3 * i + 1] == infoIn.key_g && in[3 * i + 2] == infoIn.key_b) ? 0 : 255; | ||
- | } | ||
- | else if(infoIn.bitDepth == 8 && infoIn.colorType == 3) //indexed color (palette) | ||
- | for(size_t i = 0; i < numpixels; i++) | ||
- | { | ||
- | if(4U * in[i] >= infoIn.palette.size()) return 46; | ||
- | for(size_t c = 0; c < 4; c++) out_[4 * i + c] = infoIn.palette[4 * in[i] + c]; //get rgb colors from the palette | ||
- | } | ||
- | else if(infoIn.bitDepth == 8 && infoIn.colorType == 4) //greyscale with alpha | ||
- | for(size_t i = 0; i < numpixels; i++) | ||
- | { | ||
- | out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[2 * i + 0]; | ||
- | out_[4 * i + 3] = in[2 * i + 1]; | ||
- | } | ||
- | else if(infoIn.bitDepth == 8 && infoIn.colorType == 6) for(size_t i = 0; i < numpixels; i++) for(size_t c = 0; c < 4; c++) out_[4 * i + c] = in[4 * i + c]; //RGB with alpha | ||
- | else if(infoIn.bitDepth == 16 && infoIn.colorType == 0) //greyscale | ||
- | for(size_t i = 0; i < numpixels; i++) | ||
- | { | ||
- | out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[2 * i]; | ||
- | out_[4 * i + 3] = (infoIn.key_defined && 256U * in[i] + in[i + 1] == infoIn.key_r) ? 0 : 255; | ||
- | } | ||
- | else if(infoIn.bitDepth == 16 && infoIn.colorType == 2) //RGB color | ||
- | for(size_t i = 0; i < numpixels; i++) | ||
- | { | ||
- | for(size_t c = 0; c < 3; c++) out_[4 * i + c] = in[6 * i + 2 * c]; | ||
- | out_[4 * i + 3] = (infoIn.key_defined && 256U*in[6*i+0]+in[6*i+1] == infoIn.key_r && 256U*in[6*i+2]+in[6*i+3] == infoIn.key_g && 256U*in[6*i+4]+in[6*i+5] == infoIn.key_b) ? 0 : 255; | ||
- | } | ||
- | else if(infoIn.bitDepth == 16 && infoIn.colorType == 4) //greyscale with alpha | ||
- | for(size_t i = 0; i < numpixels; i++) | ||
- | { | ||
- | out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[4 * i]; //most significant byte | ||
- | out_[4 * i + 3] = in[4 * i + 2]; | ||
- | } | ||
- | else if(infoIn.bitDepth == 16 && infoIn.colorType == 6) for(size_t i = 0; i < numpixels; i++) for(size_t c = 0; c < 4; c++) out_[4 * i + c] = in[8 * i + 2 * c]; //RGB with alpha | ||
- | else if(infoIn.bitDepth < 8 && infoIn.colorType == 0) //greyscale | ||
- | for(size_t i = 0; i < numpixels; i++) | ||
- | { | ||
- | unsigned long value = (readBitsFromReversedStream(bp, | ||
- | out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = (unsigned char)(value); | ||
- | out_[4 * i + 3] = (infoIn.key_defined && value && ((1U << infoIn.bitDepth) - 1U) == infoIn.key_r && ((1U << infoIn.bitDepth) - 1U)) ? 0 : 255; | ||
- | } | ||
- | else if(infoIn.bitDepth < 8 && infoIn.colorType == 3) //palette | ||
- | for(size_t i = 0; i < numpixels; i++) | ||
- | { | ||
- | unsigned long value = readBitsFromReversedStream(bp, | ||
- | if(4 * value >= infoIn.palette.size()) return 47; | ||
- | for(size_t c = 0; c < 4; c++) out_[4 * i + c] = infoIn.palette[4 * value + c]; //get rgb colors from the palette | ||
- | } | ||
- | return 0; | ||
- | } | ||
- | unsigned char paethPredictor(short a, short b, short c) //Paeth predicter, used by PNG filter type 4 | ||
- | { | ||
- | short p = a + b - c, pa = p > a ? (p - a) : (a - p), pb = p > b ? (p - b) : (b - p), pc = p > c ? (p - c) : (c - p); | ||
- | return (unsigned char)((pa <= pb && pa <= pc) ? a : pb <= pc ? b : c); | ||
- | } | ||
- | }; | ||
- | PNG decoder; decoder.decode(out_image, | ||
- | image_width = decoder.info.width; | ||
- | return decoder.error; | ||
- | } | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | //an example using the PNG loading function: | ||
- | |||
- | #include < | ||
- | #include < | ||
- | |||
- | void loadFile(std:: | ||
- | { | ||
- | std:: | ||
- | |||
- | //get filesize | ||
- | std:: | ||
- | if(file.seekg(0, | ||
- | if(file.seekg(0, | ||
- | |||
- | //read contents of the file into the vector | ||
- | if(size > 0) | ||
- | { | ||
- | buffer.resize((size_t)size); | ||
- | file.read((char*)(& | ||
- | } | ||
- | else buffer.clear(); | ||
- | } | ||
- | |||
- | int main(int argc, char *argv[]) | ||
- | { | ||
- | const char* filename = argc > 1 ? argv[1] : " | ||
- | | ||
- | //load and decode | ||
- | std:: | ||
- | loadFile(buffer, | ||
- | unsigned long w, h; | ||
- | int error = decodePNG(image, | ||
- | | ||
- | //if there' | ||
- | if(error != 0) std::cout << " | ||
- | | ||
- | //the pixels are now in the vector " | ||
- | | ||
- | if(image.size() > 4) std::cout << " | ||
- | } | ||
- | |||
- | /* | ||
- | //this is test code, it displays the pixels of a 1 bit PNG. To use it, set the flag convert_to_rgba32 to false and load a 1-bit PNG image with a small size (so that its ASCII representation can fit in a console window) | ||
- | for(int y = 0; y < h; y++) | ||
- | { | ||
- | for(int x = 0; x < w; x++) | ||
- | { | ||
- | int i = y * h + x; | ||
- | std::cout << (((image[i/ | ||
- | } | ||
- | std::cout << std::endl; | ||
- | } | ||
- | */ | ||
- | </ | ||
- | |||
images/png_to_raw_pixel_buffer.1484654912.txt.gz · Last modified: 2020/07/15 09:30 (external edit)