User Tools

Site Tools


chess:programming:search:alpha-beta

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
chess:programming:search:alpha-beta [2021/10/11 22:41] – created peterchess:programming:search:alpha-beta [2021/10/11 23:28] (current) peter
Line 1: Line 1:
 ====== Chess - Programming - Search - Alpha-Beta ====== ====== Chess - Programming - Search - Alpha-Beta ======
  
 +The **Alpha-Beta** algorithm (Alpha-Beta Pruning, Alpha-Beta Heuristic) is a significant enhancement to the minimax search algorithm that eliminates the need to search large portions of the game tree applying a branch-and-bound technique.
 +
 +  * Remarkably, it does this without any potential of overlooking a better move.
 +  * If one already has found a quite good move and search for alternatives, one refutation is enough to avoid it.
 +  * No need to look for even stronger refutations.
 +  * The algorithm maintains two values, alpha and beta.
 +    * They represent the minimum score that the maximizing player is assured of and the maximum score that the minimizing player is assured of respectively. 
 +
 +----
 +
 +===== Savings =====
 +
 +The savings of alpha beta can be considerable.
 +
 +  * If a standard Minimax search tree has x nodes, an alpha beta tree in a well-written program can have a node count close to the square-root of x.
 +  * How many nodes can actually be cut depends on how well ordered the game tree is.
 +    * If the best possible move is always searched first, most of the nodes are eliminated.
 +    * Of course, what the best move is not always known, or a search would not be needed in the first place.
 +  * Conversely, if the worse moves is always searched before the better moves, no part of the tree would be able to be cut at all!
 +    * For this reason, good move ordering is very important, and is the focus of a lot of the effort of writing a good chess program. 
 +
 +
 +**The minimum number of leaves with depth n and b = 40**
 +
 +^Depth^Worst case^Best case^
 +|n|<nowiki>b^n</nowiki>|<nowiki>b^ceil(n/2) + b^floor(n/2) - 1</nowiki>|
 +|1|40|40|
 +|2|1,600|79|
 +|3|64,000|1,639|
 +|4|2,560,000|3,199|
 +|5|102,400,000|65,569|
 +|6|4,096,000,000|127,999|
 +|7|163,840,000,000|2,623,999|
 +|8|6,553,600,000,000|5,119,999|
 +
 +<WRAP info>
 +**NOTE:** Assuming constantly **b** moves for each node visited and search depth **n**, the maximal number of leaves in alpha-beta is equivalent to Minimax, b ^ n.
 +
 +  * Considering always the best move first, it is **b ^ ceil(n/2) plus b ^ floor(n/2) minus one**.
 +  * This table which also demonstrates the odd-even effect.
 +
 +</WRAP>
 +
 +----
 +
 +===== Alpha-Beta =====
 +
 +<code>
 +int alphaBeta( int alpha, int beta, int depthleft ) {
 +   if( depthleft == 0 ) return quiesce( alpha, beta );
 +   for ( all moves)  {
 +      score = -alphaBeta( -beta, -alpha, depthleft - 1 );
 +      if( score >= beta )
 +         return beta;   //  fail hard beta-cutoff
 +      if( score > alpha )
 +         alpha = score; // alpha acts like max in MiniMax
 +   }
 +   return alpha;
 +}
 +</code>
 +
 +<WRAP info>
 +**NOTE:**  This makes use of a Quiescence Search, which makes the alpha-beta search much more stable.
 +</WRAP>
 +
 +
 +----
 +
 +<code>
 +score = alphaBetaMax(-oo, +oo, depth);
 +</code>
 +
 +
 +
 +<code>
 +int alphaBetaMax( int alpha, int beta, int depthleft ) {
 +   if ( depthleft == 0 ) return evaluate();
 +   for ( all moves) {
 +      score = alphaBetaMin( alpha, beta, depthleft - 1 );
 +      if( score >= beta )
 +         return beta;   // fail hard beta-cutoff
 +      if( score > alpha )
 +         alpha = score; // alpha acts like max in MiniMax
 +   }
 +   return alpha;
 +}
 + 
 +int alphaBetaMin( int alpha, int beta, int depthleft ) {
 +   if ( depthleft == 0 ) return -evaluate();
 +   for ( all moves) {
 +      score = alphaBetaMax( alpha, beta, depthleft - 1 );
 +      if( score <= alpha )
 +         return alpha; // fail hard alpha-cutoff
 +      if( score < beta )
 +         beta = score; // beta acts like min in MiniMax
 +   }
 +   return beta;
 +}
 +</code>
 +
 +----
 +
 +===== References =====
 +
 +http://web.archive.org/web/20120421170110/http://chessprogramming.wikispaces.com/Alpha-Beta
 +
 +http://web.archive.org/web/20120222165548/http://chessprogramming.wikispaces.com/Odd-Even+Effect
chess/programming/search/alpha-beta.1633992078.txt.gz · Last modified: 2021/10/11 22:41 by peter

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki