User Tools

Site Tools


chess:programming:magic_bitboards

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
chess:programming:magic_bitboards [2021/10/27 15:01] peterchess:programming:magic_bitboards [2021/10/30 13:12] (current) peter
Line 1: Line 1:
 ====== Chess - Programming - Magic BitBoards ====== ====== Chess - Programming - Magic BitBoards ======
  
-===== Magic BitBoard Principle ===== +Magic BitBoards are an efficient way to take a position and obtain the legal moves for a sliding piece. 
- +
-The basic principle is: +
- +
-  - Isolate the squares that given piece may reach from a given position, without taking board occupancy into account. This gives us a 64-bit bitmask of potential target squares. Let's call it T (for Target). +
-  - Perform a bitwise AND of T with the bitmask of occupied squares on the board. Let's call the latter O (for Occupied). +
-  - Multiply the result by a magic value M and shift the result to the right by a magic amount S. This gives us I (for Index). +
-  - Use I as an index in lookup table to retrieve the bitmask of squares that can actually be reached with this configuration. +
- +
-To sum it up: +
- +
-<code> +
-I = ((T & O) * M) >> S +
-</code> +
- +
-<WRAP info> +
-**NOTE:**   +
- +
-  * Reachable_squares = lookup[I] +
- +
-  * T, M, S and lookup are all pre-computed and depend on the position of the piece (P = 0 ... 63). +
-  * So, a more accurate formula would be: <code> +
-I = ((T[P] & O) * M[P]) >> S[P] +
-</code> +
-    * reachable_squares = lookup[P][I] +
- +
-The purpose of step #3 is to transform the 64-bit value T & O into a much smaller one, so that a table of a reasonable size can be used. +
- +
-  * What we get by computing **<nowiki>((T & O) * M) >> S</nowiki>** is essentially a random sequence of bits, and we want to map each of these sequences to a unique bitmask of reachable target squares. +
- +
-  * The 'magic' part in this algorithm is to determine the M and S values that will produce a collision-free lookup table as small as possible. +
-  * This is a **Perfect Hash Function** problem. +
-  * However, no perfect hashing has been found for magic bitboards so far, which means that the lookup tables in use typically contain many unused 'holes'+
-  * Most of the time, they are built by running an extensive brute-force search. +
- +
-</WRAP>+
  
 +The occupancy bits for a specific piece on a specific square can be multiplied against a "magic" number, and then shifted, to obtain an index in a per-initialized attack table.
  
 ---- ----
  
-===== Example =====+[[Chess:Programming:Magic BitBoards:Calculate Magic Numbers|Calculate Magic Numbers]]
  
-The Rook can move any amount of positions horizontally but cannot jump over the King.+[[Chess:Programming:Magic BitBoards:Magic BitBoard Principle|Magic BitBoard Principle]]
  
-<code> 
-┌───┬───┬───┬───┬───┬───┬───┬───┐ 
-│   │   │ R │   │   │ k │   │   │ 
-└───┴───┴───┴───┴───┴───┴───┴───┘  
-  7               0 
-</code> 
- 
-How to verify that the following is an illegal move, because the Rook cannot jump over the King? 
- 
-<code> 
-┌───┬───┬───┬───┬───┬───┬───┬───┐ 
-│   │   │   │   │   │ k │   │ R │ 
-└───┴───┴───┴───┴───┴───┴───┴───┘ 
-</code> 
- 
- 
-<WRAP info> 
-**NOTE:**  It is __not__ possible to determine valid moves for sliding pieces by using only bitwise operations. 
- 
-  * Bitwise operations and pre-computed lookup tables will be needed. 
- 
-Here, the position of the piece is in [0 ... 7] and the occupancy bitmask is in [0x00 ... 0xFF] (as it is 8-bit wide). 
- 
-  * Therefore, it is entirely feasible to build a direct lookup table based on the position and the current board without applying the **magic** part. 
- 
-  * This would be: <code> 
-reachable_squares = lookup[P][board] 
-</code> 
- 
-  * This will result in a lookup table containing: <code> 
-8 * 2^8 = 2048 entries 
-</code> 
- 
-  * Obviously we cannot do that for chess, as it would contain: <code> 
-64 * 2^64 = 1,180,591,620,717,411,303,424 entries 
-</code> 
- 
-  * Hence the need for the magic multiply and shift operations to store the data in a more compact manner. 
- 
-</WRAP> 
  
 ---- ----
  
-===== Build a Lookup Table ===== +===== References =====
- +
-<code cpp> +
-int xPos = 2;               // Position of the 'K' piece. +
-UINT64 board = 1 << xPos,   // Initial board. +
-UINT lookup[];              // Lookup table. +
- +
-void buildLookup()  +
-+
-  int i, pos, msk; +
- +
-  // Iterate on all possible positions. +
-  for(pos=0; pos<8; pos++)  +
-  { +
-    // Iterate on all possible occupancy masks. +
-    for(lookup[pos] = [], msk=0; msk<0x100; msk++)  +
-    { +
-      lookup[pos][msk] = 0; +
- +
-      // Compute valid moves to the left. +
-      for(i=pos+1; i<8 && !(msk & (1<<i)); i++)  +
-      { +
-        lookup[pos][msk] |= 1 << i; +
-      } +
-       +
-      // Compute valid moves to the right. +
-      for(i=pos-1; i>=0 && !(msk & (1<<i)); i--)  +
-      { +
-        lookup[pos][msk] |= 1 << i; +
-      } +
-    } +
-  } +
-+
- +
- +
-void update()  +
-+
-  // Get valid target squares from the lookup table. +
-  var target = lookup[xPos][board]; +
- +
-  // Redraw board +
-  for(var n=0; n<8; n++)  +
-  { +
-    if(n != xPos)  +
-    { +
-      $('td').eq(7 - n) +
-      .html(board & (1 << n) ? 'O' : ''+
-      .toggleClass('reachable', !!(target & (1 << n))); +
-    } +
-  } +
-+
  
-void moveTo(int pos)  +https://stackoverflow.com/questions/7365562/de-bruijn-like-sequence-for-2n-1-how-is-it-constructed
-+
-  var n = 7 pos); +
-  n != xPos && (board ^= << n); +
-  update(); +
-}+
  
 +https://www.stmintz.com/ccc/index.php?id=306404
  
-buildLookup(); 
-update(); 
-</code> 
chess/programming/magic_bitboards.1635346919.txt.gz · Last modified: 2021/10/27 15:01 by peter

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki