User Tools

Site Tools


chess:programming:de_bruijn_sequence

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
chess:programming:de_bruijn_sequence [2021/10/28 14:53] peterchess:programming:de_bruijn_sequence [2021/10/30 16:52] (current) peter
Line 1: Line 1:
 ====== Chess - Programming - de Bruijn Sequence ====== ====== Chess - Programming - de Bruijn Sequence ======
  
-A **de Bruijn Sequence** can be used to build "private **bitScanForward** routine, and to get the LSB (Last Significant Bit).+A **de Bruijn Sequence** represents all possible sequences of given length in a way that is as __compressed__ as possible.
  
-A chess board is conveniently 8 x 8 squares, and these can be represented by the numbers 0-63, which is a nice fit for a six-bit long De Bruijn sequence.+It can be used to build a private **bitScanForward** routine, and to get the LSB (Least Significant Bit).
  
-64-bit De Bruijn Sequences are 64(+5 wrapped)-bit strings, containing 64 overlapping unique sub-strings (ld(64)==6-bits).+A chess board is conveniently 8 x 8 squares, and these can be represented by the numbers 0-63, which is a nice fit for a six-bit long De Bruijn sequence.
  
 +  * 64-bit De Bruijn Sequences are 64(+5 wrapped)-bit strings, containing 64 overlapping unique sub-strings (ld(64)==6-bits).
   * Because multiplying a De Bruijn Sequence with a single bit or power of two value acts like a shift left, this multiply with extracting the upper six bits by shift right 64-6=58 is a well known bitscan-approach to determine the index/position of a single isolated one in a 64-bit word.   * Because multiplying a De Bruijn Sequence with a single bit or power of two value acts like a shift left, this multiply with extracting the upper six bits by shift right 64-6=58 is a well known bitscan-approach to determine the index/position of a single isolated one in a 64-bit word.
 +  * The are 67,108,864 == 0x4000000 == 2^26 Sequences with start index 0 and therefore last index 32 (last index requires wrap of the 5 upper bits, which are all zero).
 +    * There are 64 times more sequences by rotating the initial one.
 +    * So in total 2^32 possible 64*6bit De Bruijn Sequences!
  
-The are 67,108,864 == 0x4000000 == 2^26 Sequences with start index 0 and therefore last index 32 (last index requires wrap of the 5 upper bits, which are all zero).+----
  
-  * There are 64 times more sequences by rotating the initial one. +===== De Bruijn for B(2,4) =====
-  * So in total 2^32 possible 64*6bit De Bruijn Sequences!+
  
 +The cyclic sequence **0000100110101111** of length 16 is a de Bruijn sequence for n = 4.
 +
 +The 16 unique sub-strings of length 4 when considered cyclicly are:
 +
 +<code>
 +0000,0001,0010,0100,1001,0011,0110,1101,1010,0101,1011,0111,1111,1110,1100,1000
 +</code>
 +
 +----
 +
 +Taking each 4-bits
 +
 +<code>
 +0000100110101111
 +</code>
 +
 +returns:
 +
 +<code>
 +0000
 + 0001
 +  0010
 +   0100
 +    1001
 +     0011
 +      0110
 +       1101
 +        1010
 +         0101
 +          1011
 +           0111
 +            1111
 +             1110
 +</code>
 +
 +<WRAP info>
 +**NOTE:** The last 3 wraps around to the start to get the 4th digit.
 +</WRAP>
 +
 +----
 +
 +===== de Bruijn values =====
 +
 +^n^de Bruijn^
 +|1|01|
 +|2|1100|
 +|3|00010111|
 +|3|01110100|
 +|4|0000100110101111|
 +|4|1111011001010000|
 +|5|11010100111011000101111100100000|
 +|6|0000001000011000101001111010001110010010110111011001101010111111|
  
 ---- ----
Line 24: Line 79:
  
 [[Chess:Programming:de Bruijn Sequence:Get De Bruijn Sequence|Get De Bruijn Sequence]] [[Chess:Programming:de Bruijn Sequence:Get De Bruijn Sequence|Get De Bruijn Sequence]]
 +
 +[[Chess:Programming:de Bruijn Sequence:Using a De Bruijn Sequence|Using a De Bruijn Sequence]]
 +
 +[[Chess:Programming:de Bruijn Sequence:8-bit Example|8-bit Example]]
  
 ---- ----
  
 +TODO
 +
 +<code>
 +Why does the standard numbering equation for de Bruijn sequences give differing results for dB(16,4) and dB(2,16), when both are 16 bits?
 +De Bruijn sequences are numbered by the equation
 +dB(k,n) = ((k!)^(k^(n-1)))/(k^n).
 +When we have dB(2,16), the computed value is of the order 2.1598E+9859 .
 +For dB(16,4), the computed value is of the order 2.7629E+54556.
 +Yet, both sequences are represented within just 64K bytes of memory.
 +Only one of these computations can be correct.
 +</code>
  
 ---- ----
 +
  
 ===== References ===== ===== References =====
Line 35: Line 106:
  
 https://www.chessprogramming.org/De_Bruijn_Sequence https://www.chessprogramming.org/De_Bruijn_Sequence
 +
 +http://supertech.csail.mit.edu/papers/debruijn.pdf
 +
 +https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1038.9096&rep=rep1&type=pdf
  
 https://stackoverflow.com/questions/37083402/fastest-way-to-get-last-significant-bit-position-in-a-ulong-c https://stackoverflow.com/questions/37083402/fastest-way-to-get-last-significant-bit-position-in-a-ulong-c
 +
 +https://cstheory.stackexchange.com/questions/19524/using-the-de-bruijn-sequence-to-find-the-lceil-log-2-v-rceil-of-an-integer
 +
 +https://docplayer.net/167480236-Using-de-bruijn-sequences-to-index-a-1-in-a-computer-word-charles-e-leiserson-harald-prokop-keith-h-randall-mit-laboratory-for-computer-science-cam.html
 +
 +
chess/programming/de_bruijn_sequence.1635432817.txt.gz · Last modified: 2021/10/28 14:53 by peter

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki