chess:programming:de_bruijn_sequence
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
chess:programming:de_bruijn_sequence [2021/10/28 14:52] – peter | chess:programming:de_bruijn_sequence [2021/10/30 16:52] (current) – peter | ||
---|---|---|---|
Line 1: | Line 1: | ||
====== Chess - Programming - de Bruijn Sequence ====== | ====== Chess - Programming - de Bruijn Sequence ====== | ||
- | A **de Bruijn Sequence** can be used to build a "private **bitScanForward** routine, and to get the LSB (Last Significant Bit). | + | A **de Bruijn Sequence** |
+ | |||
+ | It can be used to build a private **bitScanForward** routine, and to get the LSB (Least Significant Bit). | ||
A chess board is conveniently 8 x 8 squares, and these can be represented by the numbers 0-63, which is a nice fit for a six-bit long De Bruijn sequence. | A chess board is conveniently 8 x 8 squares, and these can be represented by the numbers 0-63, which is a nice fit for a six-bit long De Bruijn sequence. | ||
- | 64-bit De Bruijn Sequences are 64(+5 wrapped)-bit strings, containing 64 overlapping unique sub-strings (ld(64)==6-bits). | + | * 64-bit De Bruijn Sequences are 64(+5 wrapped)-bit strings, containing 64 overlapping unique sub-strings (ld(64)==6-bits). |
* Because multiplying a De Bruijn Sequence with a single bit or power of two value acts like a shift left, this multiply with extracting the upper six bits by shift right 64-6=58 is a well known bitscan-approach to determine the index/ | * Because multiplying a De Bruijn Sequence with a single bit or power of two value acts like a shift left, this multiply with extracting the upper six bits by shift right 64-6=58 is a well known bitscan-approach to determine the index/ | ||
+ | * The are 67,108,864 == 0x4000000 == 2^26 Sequences with start index 0 and therefore last index 32 (last index requires wrap of the 5 upper bits, which are all zero). | ||
+ | * There are 64 times more sequences by rotating the initial one. | ||
+ | * So in total 2^32 possible 64*6bit De Bruijn Sequences! | ||
- | The are 67,108,864 == 0x4000000 == 2^26 Sequences with start index 0 and therefore last index 32 (last index requires wrap of the 5 upper bits, which are all zero). | + | ---- |
- | * There are 64 times more sequences by rotating the initial one. | + | ===== De Bruijn |
- | * So in total 2^32 possible 64*6bit | + | |
+ | The cyclic sequence **0000100110101111** of length 16 is a de Bruijn sequence for n = 4. | ||
+ | |||
+ | The 16 unique sub-strings of length 4 when considered cyclicly are: | ||
+ | |||
+ | < | ||
+ | 0000, | ||
+ | </ | ||
---- | ---- | ||
- | [[Chess: | + | Taking each 4-bits |
- | [[Chess: | + | < |
+ | 0000100110101111 | ||
+ | </ | ||
- | [[Chess:Programming: | + | returns: |
- | [[Chess:Programming: | + | < |
+ | 0000 | ||
+ | | ||
+ | 0010 | ||
+ | | ||
+ | 1001 | ||
+ | | ||
+ | 0110 | ||
+ | | ||
+ | 1010 | ||
+ | | ||
+ | 1011 | ||
+ | | ||
+ | 1111 | ||
+ | | ||
+ | </ | ||
+ | |||
+ | <WRAP info> | ||
+ | **NOTE:** The last 3 wraps around to the start to get the 4th digit. | ||
+ | </ | ||
---- | ---- | ||
- | ===== B(2, 6) ===== | + | ===== de Bruijn values |
- | De Bruijn | + | ^n^de Bruijn^ |
+ | |1|01| | ||
+ | |2|1100| | ||
+ | |3|00010111| | ||
+ | |3|01110100| | ||
+ | |4|0000100110101111| | ||
+ | |4|1111011001010000| | ||
+ | |5|11010100111011000101111100100000| | ||
+ | |6|0000001000011000101001111010001110010010110111011001101010111111| | ||
- | * **k**: The number of entities in the alphabet e.g. {0, | + | ---- |
- | * **n**: the order (length of sub-sequence required) e.g. n=4 for a four digit long PIN. | + | |
+ | [[Chess: | ||
- | **B(2, 6)** implies 2^6 or 64 bit sequences. | + | [[Chess: |
- | * There are 2^26 or 67,108,864 odd 64-bit sequences with 64 overlapping unique six-bit sub-sequences, | + | [[Chess: |
- | < | + | [[Chess: |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | | + | |
- | 10 . . . . . 101111 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 | + | |
- | 11 | + | |
- | 12 . . . . . . 111111 . . . . . . . . . . . . . . . . . . . . . . . . . . 63 | + | |
- | 13 | + | |
- | 14 . . . . . . . 111101 . . . . . . . . . . . . . . . . . . . . . . . . . 61 | + | |
- | 15 | + | |
- | 16 . . . . . . . . 110111 . . . . . . . . . . . . . . . . . . . . . . . . 55 | + | |
- | 17 | + | |
- | 18 . . . . . . . . . 011101 . . . . . . . . . . . . . . . . . . . . . . . 29 | + | |
- | 19 | + | |
- | 20 . . . . . . . . . . 110101 . . . . . . . . . . . . . . . . . . . . . . 53 | + | |
- | 21 | + | |
- | 22 . . . . . . . . . . . 010110 . . . . . . . . . . . . . . . . . . . . . 22 | + | |
- | 23 | + | |
- | 24 . . . . . . . . . . . . 011000 . . . . . . . . . . . . . . . . . . . . 24 | + | |
- | 25 | + | |
- | 26 . . . . . . . . . . . . . 100011 . . . . . . . . . . . . . . . . . . . 35 | + | |
- | 27 | + | |
- | 28 . . . . . . . . . . . . . . 001111 . . . . . . . . . . . . . . . . . . 15 | + | |
- | 29 | + | |
- | 30 . . . . . . . . . . . . . . . 111100 . . . . . . . . . . . . . . . . . 60 | + | |
- | 31 | + | |
- | 32 . . . . . . . . . . . . . . . . 110011 . . . . . . . . . . . . . . . . 51 | + | |
- | 33 | + | |
- | 34 . . . . . . . . . . . . . . . . . 001100 . . . . . . . . . . . . . . . 12 | + | |
- | 35 | + | |
- | 36 . . . . . . . . . . . . . . . . . . 110010 . . . . . . . . . . . . . . 50 | + | |
- | 37 | + | |
- | 38 . . . . . . . . . . . . . . . . . . . 001001 . . . . . . . . . . . . . 9 | + | |
- | 39 | + | |
- | 40 . . . . . . . . . . . . . . . . . . . . 100101 . . . . . . . . . . . . 37 | + | |
- | 41 | + | |
- | 42 . . . . . . . . . . . . . . . . . . . . . 010101 . . . . . . . . . . . 21 | + | |
- | 43 | + | |
- | 44 . . . . . . . . . . . . . . . . . . . . . . 010100 . . . . . . . . . . 20 | + | |
- | 45 | + | |
- | 46 . . . . . . . . . . . . . . . . . . . . . . . 010011 . . . . . . . . . 19 | + | |
- | 47 | + | |
- | 48 . . . . . . . . . . . . . . . . . . . . . . . . 001110 . . . . . . . . 14 | + | |
- | 49 | + | |
- | 50 . . . . . . . . . . . . . . . . . . . . . . . . . 111000 . . . . . . . 56 | + | |
- | 51 | + | |
- | 52 . . . . . . . . . . . . . . . . . . . . . . . . . . 100001 . . . . . . 33 | + | |
- | 53 | + | |
- | 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . 000110 . . . . . 6 | + | |
- | 55 | + | |
- | 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 011011 . . . . 27 | + | |
- | 57 | + | |
- | 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101101 . . . 45 | + | |
- | 59 | + | |
- | 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101|00 | + | |
- | 61 | + | |
- | 62 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01|0000 | + | |
- | 63 | + | |
- | </ | + | |
- | ---- | + | [[Chess: |
- | ===== De Bruijn Graph on a Chess Board ===== | + | [[Chess: |
- | A directed De Bruijn Graph of B(2, 6) sequences with Little-Endian Rank-File Mapping board coordinates (a1 = 0, b1 = 1, h8 = 63). | + | ---- |
- | * For topology reasons, almost each node (except a1 and h8) of the graph is de-concentrated and appears twice in the form of two reversed binary trees. | + | TODO |
- | * The leaf outputs join the respective reversed tree. | + | |
- | * Between c6 and f3 is a direct cycle, since 42 is 2*21 and 21 is (2*42 + 1) % 64, with both six-bit pattern reversed - 010101 (21) versus 101010 (42). | + | |
- | * The challenge is to traverse the graph in any way to visit each of the 64 nodes aka squares __exactly once__. | + | |
< | < | ||
- | +-----------------> | + | Why does the standard numbering equation for de Bruijn sequences give differing results for dB(16,4) and dB(2,16), when both are 16 bits? |
- | | | + | De Bruijn sequences are numbered by the equation |
- | | | + | dB(k,n) = ((k!)^(k^(n-1)))/(k^n). |
- | | | + | When we have dB(2,16), the computed value is of the order 2.1598E+9859 . |
- | | c1 | + | For dB(16,4), the computed value is of the order 2.7629E+54556. |
- | ^ +-----/ | + | Yet, both sequences are represented within just 64K bytes of memory. |
- | | e1 f1 | + | Only one of these computations can be correct. |
- | | | + | |
- | | a2 b2 c2 d2 | + | |
- | | a3 b3 c3 d3 e3 |f3| g3 h3 | + | |
- | +-a5b5c5d5e5f5g5h5a6b6c6d6e6f6g6h6 a7b7c7d7e7f7g7h7a8b8c8d8e8f8 | + | |
- | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | | | + | |
- | | + | |
- | +-----------------> | + | |
- | | | | | + | |
- | | | + | |
- | | | + | |
- | | f8 | + | |
- | ^ +-----/ | + | |
- | | d8 c8 | + | |
- | | +-/ \-+ +-/ \-+ | + | |
- | | h7 g7 f7 e7 | + | |
- | | h6 g6 f6 e6 d6 |c6| b6 a6 | + | |
- | +-h4g4f4e4d4c4b4a4h3g3f3e3d3c3b3a3 h2g2f2e2d2c2b2a2h1g1f1e1d1c1 | + | |
- | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | + | |
</ | </ | ||
---- | ---- | ||
+ | |||
===== References ===== | ===== References ===== | ||
Line 153: | Line 106: | ||
https:// | https:// | ||
+ | |||
+ | http:// | ||
+ | |||
+ | https:// | ||
https:// | https:// | ||
+ | |||
+ | https:// | ||
+ | |||
+ | https:// | ||
+ | |||
+ |
chess/programming/de_bruijn_sequence.1635432775.txt.gz · Last modified: 2021/10/28 14:52 by peter